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Abstract
a new ACM based on vector bundle constraint for particle swarm optimization (VBCPSO-ACM ) is proposed. Different from the traditional

Active contour modeling (ACM) has been shown to be a pow erful method in object boundary extraction. In this papers

particle swarm optimization (PSO), in the process of velocity update avector bundle is predefined for each particle and velocity update of
the particle is restricted to its bundle. Applying this idea to ACM, control points on the contour are treated as particles in PSO and the
evolution of the contour is driven by the particles. Meanwhile, global searching is shifted to local searching in ACM by decreasing the
number of neighbors and irertia. In addition, the addition and deletion of particles on the active contour make this new model possible for
representing the real boundaries more precisely. The proposed VBCPSO-ACM can avoid self-intersection during contour evolving and also

extract inhom ogeneous boundaries. The simulation results proved its great peformance in performing contour extraction.
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Since the introduction of snakes by Kass et
al.'', active contour modeling (ACM) has a wide
variety of applications in image processing and com-
puter vision, such as segmentation, reconstruction,
shape analysis and visual tracking. In the past two
decades, various algorithms based on ACM have been
put forward >~ . Among these contributions, the in-
vention of the level set methods ¢ is a breakthrough
for changing the topology of evolving curve, and then
makes the automatism of multiple objects segmenta-

tion possible.

ACM was originally achieved from minimizing
some energy functional. But the minimization often
sticks into local minima, particularly in the case of
long concavities and weak boundaries. Xu et al.!’
proposed a gradient vector flow (GVF ) snake, in
which the GVF is to take the place of external force
to attract the snake to the real boundaries. To some
extent, this scheme can solve the concavities case,
while fails in dealing with the long ones.

To overcome the weak boundaries leakage, Chan
et al.'” derived a region and edge-based energy func-
tional from the mumford-shah functional ¥ , utilizing
not only the image information near the evolving con-

boundary extraction. active contour modeling, particle swarm optimization. velocity update vector bundle.

tour, but also the image statistics inside and outside
the contour to yield more robust performance. How-
ever, when there are more than two averages, this
kind of methods, although there had been much im-
provement in Refs. [ 9—11], still bring on high com-
putational costs for computing the level set functions.

Self organizing map (SOM )-based ACM2M

with competitive leamning can solve the problem in a
certain degree. However, SOM-based ACM is feasi-
ble only after a set of feature points from the edge
map has been obtained. So it is necessary to do edge
detection before ACM. M oreover, neurons cannot
share their information with each other to search the
real objects boundaries.

Particle swarm optimization (PSO M s a new
kind of optimization method. In a PSO paradigm,
particles transmit information among themselves in

order to search the optimal positions.

However, since the traditional PSO only permits
all the particles in the image space to search for the
best positions if measured by gradient and intensities
the particles will not approach the real contour but
tend to flock together and then the contour driven by
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them will possibly self-intersect. On the other hand,
as a result of illumination, quality of image and etc.,
the features of object boundaries, i.e. gradient and
intensitiess, may vary in different parts. This phe-
nomenon is called inhomogeneous boundaries here. In
this case, the particles on different parts of the
boundaries cannot be optimized simultaneously. Con-
sequently, we cannot simply apply the traditional

PSO to ACM.

In this paper, we present a vector bundle con-
straint for PSO, called VBCPSO, and its application
to ACM. The VBCPSO-ACM can solve the self-in-
tersection problem well and make it possible for the
inhomogeneous boundaries extraction, where velocity
update for each of the particles is restricted in the cor-
responding predefined vector bundle.

1 Traditional particle swarm optimization

Particle swarm optimization (PSO M is a popu-
latiomrbased evolutionary computation method in-
spired from the social behavior of birds flocking, fish
schooling, bees swarming and etc. The main princi-
ple of PSO is that each of the particles (members of
the population), which are treated as candidate solu-
tions of an optimization problem, flies through the
search space to get to its optimal position, with the
velocity dynamically adjusted according to its own fly-
ing experience and that of its neighbors. In the PSO
mechanism, each particle owns the following four at-
tributes; current velocity, current position, the best
position it discovered so far, the best position discov-
ered by its neighbors so far.

Suppose that there are N particles in the popula-
tion, then the updates of velocities and positions are
described as follow s:

vttt D= w () v, (D)
+e o P Gu () — x: (1))
Fc2 0 P Cupcn () — xi(2))) (D)
x,(t+1)= x,(t)+v;t+ 1) 2
where w(¢), v;(¢t) and x;(¢), (i=1, -+, N, d=
I, -5+ M) are inertia, velocity, current position, re-
spectively; n (i) denotes the neighborthood for the
ith particle; u;(¢) and uni(¢)y (i=1, -+ N, d=
I, -5 M) are the best discovered position and the
best discovered position by the neighbors of the ith
particle at epoch ¢ under some fitness function, re-
spectively; and c1 and ¢2 are acceleration constants;

¢, and ¥, are random numbers.

Typically, the inertia w (¢) is chosen to be a
linearly decreasing function. The decreasing inertia
over time will cause the particle to shift from global
searching to local searching.

2 VBCPSO-ACM algorithm

In this section, the algorithm of vector bundle
constraint for PSO and its application to ACM
(VBCPSO-ACM) are proposed in detail.

Give some control points with a chain topologys,
and suppose that they are connected by line segments
in the image space. Then we use the idea of PSO to
drive the control points which are treated as parti-
cles, along with the line segments to search for the
real contour of the desired object. The control points
with chain topology play the 1ole of an active contour
in ACM. In the following, the control points and the
particles are not treated discriminatively unless speci-

fied.

In an HX W image, given a fitness function f,
the active contour is modeled by a population of N (¢)
control points { p; (£)} ﬁv:”l), where N (¢) is gross of
the population at epoch ¢, and p; (¢) owns the fol-
lowing four attributes: x,;(¢#)= (x;(#), y;(¢)) isits
2-D position, v; (t)=Cv; ; (£), v; , (£)) is its 2-D
velocity, w; (£)= Cu; 1 (2)s u; ,(¢)) is its best posi-
uyn Ct)= Cuycp.g Ct
un(n.2(1)) is the best position discovered so far by

tion discovered so far,

its neighbors.
2.1 Vector bundle

Suppose that in a 2-D space, V; and V] are two
vectorss which have the common starting points O.
Rotating V; to V; clockwise with respect to O, we
obtain a sector. So vector bundle Si~; as shown in
Fig. 1 (case T and case TI) is defined as the set of vec-
tors sampled from this sector and sharing the common
starting point O.

In the following, we show in detail how to judge
whether avector V belongs to the vector bundle §; . ;
constructed by vectors V; and V.

In order to handle this problem conveniently, we
solve it in the corresponding complex plane Z (O)
with the origin O. That is if the three correspond-
ing complex numbers are still denoted as V, V; and

V;» then we have: If 0<C0<C0, ., where



1222 www. tandf. co. uk/ journals  Progress in Natural Science Vol. 17 No. 10 2007

i
|
i
|

v

b

Fig. 1. Vector bundle §; ,jin 2-D. (a) Case I; (b) case II.
V. ; v
0= arg| —= Li=a V,= ——-
2 N i—j g 7 ’ i Ak
_V 4
V, — y V: TR
Y Iy |l Iyl

arg( ) is the principal value of arguments of complex
numbers, then V belongs to the vector bundle ;. ;.

Otherwise, V does not belong to the vector bundle

i)
2.2 Velocity selection for particles

We intend to drive the active contour to ap-
proach the real boundary by moving the particles on
it. So it is critical to design the velocities for those
particles. However, since the particles always search
for the global optimal positions, if we directly use the
traditional PSO, it may drive the line segments con-
nected those particles to self-intersect (Fig.2), then
the subsequent particles movement will become more
and more chaotic and end up with active contours of
disorder. This phenomenon is unfavorable in ACM .
Thereby, we should make an adaptation in the veloci-
ty update procedure.
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In order to eliminate this chaos we present the
following scheme for velocity selection of the parti-
cles. For each particle p; (¢) at epoch t, i=1, -y
N (t), we restrict its next velocity v; (11 1) in the
vector bundle §;— | .;+. InFig.3, the vector bundle

S;— 1+ is sampled from the sector formed by rotat-
ing the vector V;—1 clockwise to Vi+1, e.g., theve-

locity v,-/ (t+ 1) € 8—1>i+1 is one of the feasible
choice of velocity for p; ().

120
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Fig. 3.  The vector bundke S, .4, for particle p,(#).

For particle p; (#), if the velocity computed by
Eq. (1) is not in the vector bundle Si—i~i+1, we re-
place u,;y (¢) in Eq. (1) with the best position of
other particles until this replacement causes the veloc-
ity v;(¢+ 1) to belong to S;—.,+;. Note that, for
p1(t) we have Sy-2, while for py () we have

SN*I%I .

Consequently, give an inertia

t t
w()=|1— W T Weng (3)
Tm a satrt T o end
where T, Waum» and w,., are the iteration time,

starting inertia, and ending inertia, respectively.
And supposing that { x; Cz), v; Ct)y u; ()

NCD . .
u,» ()} -}y are current information for the popula-

. N . .
tion { p;(¢)};,—1, we summarize the selection proce-

dure of v; (¢+1) as follows:

(i) TInitialize the acceleration constants ¢ and
¢2, produce random numbers ¢ and ¢> from a uni-

form distribution between 0.0 and 1.0.

(ii) Rank { u;( t)}iv:(tl) according to their fitness
on the fitness function f. Thus we have

fCuniy ()= u,-l(t))>f(ui2(t))
> > f(uiN( )(t))

(iii) For particle p;(¢), find the range of vector
bundle S;—1>;+1. And set a counter k=0.
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(iv) Let k=k+1, If &> N (1), turn to (vi);
otherwise, compute v;(#+ 1) by the following equa-
tion;

v+ 1D =w) v, (t)
+ecp o P Gu () — x: ()
+cz°902°(uik(t)*xi(t))) (4)

(v) If ﬁ,»(t—i—l)ES,-f]»,-ﬂ set v; (t+1)=

Vi (t+1) . .
m, turn to (vii); else turn to (iv).

(vi) There is no v; (¢+ 1) such that v; (t++1)
Esiflﬁi( 1» set Vl(t+1>:09 turn to (vii).

(vii) Velocity selection is finished.

Note that, inthe step (v), lv,(z+1) Il is the
Euclid norm of v;(¢+1). The normalization of v, (¢
+1) before the assignment to v; (1 1) is to avoid

the explosion of velocity .
2.3 Outline of the proposed algorithm

An outline of the proposed VBCPSO-ACM algo-

rithm is summarized in the following steps:

(i) Parameters initialization: initialization of ac-
celeration constant ¢; and ¢,, iteration time T,

starting inertia W, and ending inertia w ...

(ii) Position initialization; initialize the active
contour as a chain topology, then number the nodes
(particles) counterclockwise, and let N (0) be the
gross of the particles. For each i=1, ---, N(0), let
x;(0) be the initial position of the particles at epoch ¢
=0.

(iii) Velocity initialization: for each i=1, -+,
N (0), let v;(0) be random unit vectors, the compo-
nents of which are non-negative, thus each particle is
assigned by a random speed at epoch ¢=0.

Giv) Compute the best position for each particle
and the one among the population: for all i, set

ui(0)= x;(0) and uni) @)=arg _ max  f(x;(0)).

(v) Compute the velocity and position at epoch ¢
=1 according to
v,(D=wg ., v;0) +c,° P,
* CuyH (0 — x;(0)) ®))
and

x (1) = x;0) +v,(1) (6

(vi) Update the best position u; (¢) for each
particle and the best position u,(; () among its

neighbors at epoch ¢.

(vii) Update velocity for each particle at the
next epoch £+ 1 according to the scheme described in
section 2.2.

(viii) Update the position for each particle at e-
poch t+1 as follows:
x(t+D=x(H)+v,G+1D @D

(ix ) Particle insertion and deletion.

(x) If t= Tma the VBCPSO-ACM finishes;

otherwise turns to step (vi).

In step (i), we initialize the parameters T

m ax®

¢ and ¢, as usual as the traditional PSO paradigm.

In step (ii)s we initialize a chain of particles
large enough to encircle the desired object in the ob-
served image. If no a priori information of the ob-
served objects is available, set the initial chain to be a
rectangle a bit smaller than the image (Fig.4).

w

Fig. 4.  Initial population for active contour.

In step (iii) and (vii), the velocity should not
cause the particles to move out of the image.

In step (vi) the number of neighbors for the par-
ticle is usually chosen to be decreasing. Since the ve-
locity of each particle is computed from the best posi-
tion discovered by its neighbors, the decreasing num-
ber of neighbors will naturally cause the fact that the
velocity gradually shifts to dependence on a shrinking
subset of the population. M eanw hile the population
shifts from global searching to local searching.

Usually, we choose a circle topology for the
neighborhood while the number of neighborhood at
epoch t is:

Nn(i)st)= [1

¢
°2
T max

/.")
X
O

t
Tmax] (N(tHY— 1D+
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where N (¢)—1 and 2 are the number of members in
the neighborhood n (i) for the ith particle at the be-
ginning and in the end, respectively.

In step (ix), we can set two constants d,,, and

d iy Where d > d .. 0.

If the distance between any two adjacent parti-
cles is larger than d naxs then a new particle is insert-
ed between them. For example, for the particles
pi(t) and p;i+1(¢) such that ‘ p[(t)_pi+1(t)‘>
d axs both the position and the best discovered posi-
tion of the inserted
p(O)+tp (1)

2

its neighbors is maxCu, (;» C#)s (1) (£)).

new ly particle  are

,» and the best discovered position by

If the distance such that | p; (£)—p; ()| <
d ine the suboptimal one of the two particles is delet-
ed. In both the above insertion and deletion, the
topology of the chain should be maintained. This
paradigm aims to build a contour with uniformly dis-
tributed particles and control the accuracy of the ap-
proximation.

3 Implementation

In this section, we give some implementations of
the proposed VBCPSO-ACM. During the active con-
tour evolution, the line segments between particles
are helpful to represent the real boundaries while the
evolving contour has approached the real boundaries.
For this reason, it is not necessary to move the seg-
ments, and they can be computed by the positions of
the particles. Consequently, in the implementation
below, we do not draw the line segments before the
convergence of the active contour. Moreover, we only

use the gradient information as the fitness function in
the proposed VBCPSO-ACM.

The first im plementation shown in Fig. 5 is the
case of a hand image, in which long concavities ap-
pear on the boundary. In thisimplementation, N (0)
=48 particles are set to be the initial population. The
values of other parameters are: c1=c2=2, Wyat=
0.9 Werd =0.4 Tow =40, duawn=4% dumin= 2.
With particle insertion and deletion, finally N ( Tpay)
=123 particles and the segments between them are
used to represent the real boundary.

The second implementation shown in Fig. 6 is
the, case, of .a contour modeling for a plane under the

inhomogeneous background. Note that the boundary
of the plane has different features at different parts.
The parameters are as follows: ¢;=c,=2, w ., =
0.9, wey=0.4 T,,=72 d 4, di.= 2.
With N (0)=52 particles used on the initial contour,

after the implementation of the proposed algorithm,

max min

N ( Tax )= 58 particles are used to represent the real
boundary .

(a) (b) (¢)

Fig. 5. Implementation of a 128X 164 hand image. (a) Orginal
image; (b) 48 particles on theinitial contour; (¢) results

(a) (b)

(C)
Fig. 6. Implementation of a 256X 256 plane image. (a) Orginal

image; (b) 52 particles on theintial contour; (¢) results

In the end, we apply the proposed VBCPSO to
the case of multiple contours modeling in Fig.7. The
parameters are as follows: ¢;=c, =2, Wy, —=0.9,

.. .‘ "*

(a) (b) (c)

Fig. 7. Implementation on two objects. (a) 128X 128 original
image; (b) 32 parnticles on theintial contour; (¢) results
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Woa=0.4y Tpu=37s dpu=23 d,n=1 NO)=
32, N(T

there are some parts of the contour between the de-

)=46. The results are good except that

max

sired objects.
4 Conclusions

In this paper, a modified particle swarm opti-
mization for active contour modeling (VBCPSO-

ACM) is proposed.

In comparison with the SOM-ACM, we do not
use any feature points to attract the contour in VBCP-
SO-ACM. Therefore, we can omit the step of pre-
processing edge detection for the observed image.

According to the characteristics of contour mod-
eling, avector bundle for velocity update of each par-
ticle is defined first. Then in the velocity update
scheme, the velocity is restricted in the corresponding
vector bundle and decided on the best discovered posi-
tions of other particles as well.

As a consequence, the self-intersection problem
is eliminated to maintain the contour topology. More-

over, the VBCPSO-SOM is capable for inhomoge-

neous boundary extraction.

In the process of iteration, we also insert and
delete particles according to the adjacent distance of
the particles to keep the precision of approaching the
real contour. What is more, in the neighboring func-
tion the decreasing number of neighbors causes the
population to shift from global searching to local
searching.

The implementations show that the proposed
VBCPSO can perform contour extraction greatly in
the case of long concavities, inhomogeneous back-
ground, inhomogeneous boundary and multiple con-
tour extractions.

5 Discussions and future work

In this paper, the neighboring function for the
number of neighboring particles is determined on a
monotonously decreasing function (Eq. (8)). In fact,
it is more favorable to consider the continuity of the

information (including gradient and intensities) of the
neighboring particles to design the number of its
neighbors since each peace of boundaries is continu-
ous. What is more, we only use the gradient of image
to be the fitness function. In the future work, we are

going to explore some more appropriate neighboring
function and better fitness function to seek for more
robust performance.
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