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　　Abstract　　Active contour modeling(ACM)has been show n to be a pow erful method in object boundary ext raction.In this paper ,

a new ACM based on vector bundle const raint for particle sw arm optimization(VBCPSO-ACM)i s proposed.Dif ferent f rom the tradit ional

particle sw arm opt imization(PSO), in the process of velocity update , a vector bundle is predefined for each particle and velocity update of

the part icle is rest ricted to it s bundle.Applying this idea to ACM , cont rol points on the contou r are treated as particles in PSO and the

evolution of the contour is driven by the particles.Meanwhile , global searching is shi ft ed to local searching in ACM by decreasing the

number of neighbors and inertia.In addi tion , the addit ion and deletion of particles on the active contou r make this new model possible for

representing the real boundaries more precisely.The proposed VBCPSO-ACM can avoid self-intersect ion during contour evolving and also

ext ract inhom ogeneous boundaries.The simulation results proved its great performance in performing contour extraction.

　　Keywords:　boundary extraction , active contour modeling , particle swarm optimization , velocity update , vector bundle.

　　Since the int roduction of snakes by Kass et

al.[ 1] , active contour modeling (ACM)has a w ide

variety of applications in image processing and com-
puter vision , such as segmentation , reconstruction ,
shape analysis and visual tracking.In the past two

decades , various algorithms based on ACM have been

put forward
[ 2—7]

.Among these contributions , the in-

vent ion of the level set methods
[ 6]

is a breakthrough

for changing the topology of evolving curve , and then

makes the automatism of mult iple objects segmenta-
tion possible.

ACM was originally achieved from minimizing

some energy functional.But the minimizat ion of ten

sticks into local minima , particularly in the case of

long concavities and weak boundaries.Xu et al.[ 7]

proposed a gradient vecto r flow (GVF)snake , in
w hich the GVF is to take the place of external force

to att ract the snake to the real boundaries.To some

ex tent , this scheme can solve the concavities case ,
while fails in dealing wi th the long ones.

To overcome the w eak boundaries leakage , Chan
et al.[ 4] derived a region and edge-based energy func-

tional f rom the mum ford-shah functional
[ 8]
, utilizing

not only the image information near the evolving con-

tour , but also the image statistics inside and outside

the contour to yield more robust performance.How-
ever , when there are more than tw o averages , this
kind of methods , although there had been much im-
provement in Refs.[ 9—11] , still bring on high com-
putational costs fo r comput ing the level set functions.
　　

Self organizing map (SOM)-based ACM
[ 12—14]

w ith competitive learning can solve the problem in a

certain degree.However , SOM-based ACM is feasi-
ble only after a set of feature points f rom the edge

map has been obtained.So it is necessary to do edge

detection before ACM .Moreover , neurons cannot

share their information w ith each other to search the

real objects boundaries.

Particle sw arm optimization (PSO)
[ 15]

is a new

kind of optimization method.In a PSO paradigm ,
particles transmit info rmation among themselves in

order to search the optimal posit ions.

However , since the tradi tional PSO only permits

all the particles in the image space to search for the

best positions if measured by g radient and intensities ,
the part icles will not approach the real contour but

tend to flock together and then the contour driven by



them will possibly self-intersect.On the other hand ,
as a result of illumination , quali ty of image and etc.,
the features of object boundaries , i.e.g radient and

intensities , may vary in dif ferent parts.This phe-
nomenon is called inhomogeneous boundaries here.In
this case , the particles on different parts of the

boundaries cannot be optimized simultaneously.Con-
sequently , we cannot simply apply the traditional

PSO to ACM.

In this paper , we present a vector bundle con-
st raint fo r PSO , called VBCPSO , and its application

to ACM.The VBCPSO-ACM can solve the self-in-
tersection problem well and make it possible for the

inhomogeneous boundaries ex traction , where velocity

update for each of the particles is rest ricted in the cor-
responding predefined vector bundle.

1　Traditional particle swarm optimization

Part icle sw arm optimization(PSO)
[ 15]

is a popu-
lation-based evolutionary computation method in-
spired f rom the social behavio r of birds flocking , fish
schooling , bees sw arming and etc.The main princi-
ple of PSO is that each of the particles (members of

the population), which are treated as candidate solu-
tions of an optimization problem , f lies through the

search space to get to its optimal position , with the

veloci ty dynamically adjusted acco rding to its own fly-
ing experience and that of it s neighbors.In the PSO

mechanism , each particle ow ns the following four at-
tributes:current velocity , current position , the best

posit ion it discovered so far , the best position discov-
ered by i ts neighbors so far.

Suppose that there are N particles in the popula-
tion , then the updates of velocities and positions are

described as follow s:
vi(t +1)=w(t)· v i(t)

　　+c1 ·φ1 ·(u i(t)- xi(t))

　　+c2 ·φ2 ·(un(i)(t)-x i(t))) (1)

x i(t +1)= x i(t)+vi(t +1) (2)

where w(t), v i(t)and xi(t), (i =1 , … , N , d =
1 , …, M)are inertia , velocity , current posit ion , re-
spectively;n(i)denotes the neighbo rhood for the

i th particle;u i(t)and un(i)(t), (i=1 , … , N , d =
1 , …, M)are the best discovered position and the

best discovered posi tion by the neighbors of the i th

part icle at epoch t under some fitness function , re-
spectively;and c1 and c2 are acceleration constants;
φ1 and φ2 are random numbers.

Typically , the inertia w(t)is chosen to be a

linearly decreasing function.The decreasing inertia

over time will cause the particle to shift f rom global

searching to local searching.

2　VBCPSO-ACM algorithm

In this section , the algorithm of vector bundle

constraint for PSO and its application to ACM

(VBCPSO-ACM)are proposed in detail.

Give some control points w ith a chain topology ,
and suppose that they are connected by line segments

in the image space.Then w e use the idea of PSO to

drive the control points , which are t reated as part i-
cles , along w ith the line segments to search for the

real contour of the desired object.The control points

w ith chain topology play the role of an active contour

in ACM.In the follow ing , the control points and the

particles are not treated discriminatively unless speci-
fied.

In an H×W image , given a fi tness funct ion f ,
the active contour is modeled by a population of N(t)

control points{pi(t)}
N(t)
i=1 , where N(t)is gross of

the population at epoch t , and p i(t)ow ns the fol-
low ing four at tributes:x i(t)=(x i(t), y i(t))is it s

2-D position , v i(t)=(vi ,1(t), vi ,2(t))is it s 2-D
velocity , ui(t)=(u i ,1(t), u i , 2(t))is its best posi-
tion discovered so far , un(i)(t)=(un(i),1(t),

un(i),2(t))is the best posi tion discovered so far by

its neighbors.

2.1　Vector bundle

Suppose that in a 2-D space , Vi and Vj are tw o

vectors , which have the common starting points O.
Rotating Vi to Vj clockw ise w ith respect to O , we

obtain a secto r.So vecto r bundle Si※j as show n in

Fig.1(case I and case II)is defined as the set of vec-
to rs sampled from this sector and sharing the common

starting point O .

In the following , we show in detail how to judge

w hether a vecto r V belongs to the vecto r bundle Si ※j

constructed by vectors Vi and Vj.

In order to handle this problem convenient ly , we
solve it in the corresponding complex plane Z (O)
w ith the origin O .That is , if the three correspond-
ing complex numbers are still denoted as V , Vi and
Vj , then we have:If 0≤θ≤θi ※j , where
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Fig.1.　Vector bundle S i ※j in 2-D.(a)Case I;(b)case II.

θ=arg
 Vi

 V
, 　θi ※j =arg

 Vi

 Vj
, 　 Vi =

Vi
‖ Vi ‖

,

 Vj =
Vj

‖ Vj ‖
, 　 V =

V
‖V‖

,

arg(·)is the principal value of arguments of complex

numbers , then V belongs to the vecto r bundle Si※j.

Otherw ise , V does not belong to the vecto r bundle

Si ※j.

2.2　Velocity selection fo r particles

We intend to drive the active contour to ap-
proach the real boundary by moving the particles on

i t.So it is critical to design the velocities fo r those

part icles.However , since the particles always search

for the global optimal positions , if we directly use the

traditional PSO , it may drive the line segments con-
nected those particles to self-intersect (Fig.2), then
the subsequent particles movement w ill become more

and more chaot ic and end up with active contours of

disorder.This phenomenon is unfavorable in ACM .
Thereby , we should make an adaptat ion in the veloci-
ty update procedure.

Fig.2.　Self-intersection of line segments betw een part icles.

　　In order to eliminate this chaos , we present the

follow ing scheme fo r velocity selection of the part i-
cles.For each particle p i(t)at epoch t , i =1 , …,
N(t), we rest rict its nex t velocity vi(t+1)in the

vector bundle Si-1※i+1.In Fig .3 , the vecto r bundle

Si-1※i+1 is sampled f rom the secto r formed by rotat-

ing the vecto r Vi-1 clockw ise to Vi+1 , e.g., the ve-

locity v′i (t +1)∈ Si-1※i+1 is one of the feasible

choice of velocity fo r p i(t).

Fig.3.　The vector bundle S i-1※i+1 for particle p i(t).

For particle p i(t), if the veloci ty computed by

Eq.(1)is not in the vector bundle Si-1※i+1 , we re-
place un(i)(t)in Eq.(1)with the best posi tio n of

other part icles until this replacement causes the veloc-
ity v i(t +1)to belong to Si-1※i+1.No te that , for

p1(t)we have SN※2 , while fo r pN(t)we have

SN-1※1.

Consequent ly , give an inertia

w(t)= 1- t
Tmax

·w satr t+
t

T max
· w end (3)

where Tmax , w start , and w end are the iteration time ,
starting inertia , and ending inertia , respectively.
And supposing that {x i (t), vi (t), u i (t),

un(i)(t)}
N(t)
i=1 are current information for the popula-

tion{p i(t)}
N(t)
i=1 , we summarize the selection proce-

dure of vi(t+1)as follow s:

(i)Init ialize the acceleration constants c1 and

c2 , produce random numbers φ1 and φ2 f rom a uni-

form distribution betw een 0.0 and 1.0.

(ii)Rank{u i(t)}
N(t)
i=1 according to their f itness

on the fitness function f.Thus w e have

f(un(i)(t)=u i
1
(t))≥ f(ui

2
(t))

≥… ≥ f(u i
N(t)
(t))

　　(iii)Fo r particle p i(t), f ind the range of vector

bundle Si-1※i+1.And set a counter k =0.
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(iv)Let k =k +1 , If k >N(t), turn to (vi);
o therwise , compute  v i(t+1)by the follow ing equa-
tion:

 v i(t +1)=w(t)· v i(t)

　　+c1 ·φ1 ·(u i(t)-x i(t))

　　+c2 ·φ2 ·(u i
k
(t)- xi(t))) (4)

　　(v)If  v i(t +1)∈ Si-1※i+1 set vi(t +1)=
 v i(t+1)
‖ v i(t+1)‖

, turn to (vii);else turn to (iv).

(vi)There is no  v i(t +1)such that  v i(t+1)
∈ Si-1※i+1 , set v i(t+1)=0 , turn to (vii).

(vii)Velocity selection is finished.

Note that , in the step(v), ‖ v i(t+1)‖ is the

Euclid norm of  v i(t+1).The normalization of  v i(t
+1)before the assignment to v i(t +1)is to avoid

the explosion of velocity .

2.3　Outline of the proposed algo rithm

An outline of the proposed VBCPSO-ACM algo-
rithm is summarized in the follow ing steps:

(i)Parameters initialization:initialization of ac-
celeration constant c1 and c2 , iteration time Tmax ,
starting inert ia w star t and ending inertia w end.

(ii)Position initialization:initialize the active

contour as a chain topology , then number the nodes

(particles)counterclockwise , and let N(0)be the

g ross of the particles.For each i=1 , … , N(0), let
x i(0)be the initial position of the particles at epoch t

=0.

(iii)Veloci ty ini tializat ion:for each i =1 , … ,
N(0), let v i(0)be random unit vectors , the compo-
nents of w hich are non-negative , thus each particle is

assigned by a random speed at epoch t=0.

(iv)Compute the best position fo r each particle

and the one among the population:for all i , set
u i(0)=xi(0)and un(i)(0)=arg

x
max

i=1 , … ,N(0)
f(xi(0)).

(v)Compute the velocity and position at epoch t

=1 according to

v i(1)=w star t· v i(0)+c2 ·φ2
·(un(i)(0)- xi(0)) (5)

and

xi(1)= x i(0)+v i(1) (6)

　　(vi)Update the best position u i(t)for each

particle and the best position un(i)(t) among its

neighbo rs at epoch t.

(vii)Update veloci ty for each particle at the

nex t epoch t+1 according to the scheme described in

section 2.2.

(viii)Update the position fo r each particle at e-
poch t+1 as follow s:

xi(t +1)= xi(t)+v i(t +1) (7)

　　(ix)Particle insert ion and deletion.

(x) If t =Tmax the VBCPSO-ACM finishes;
otherw ise turns to step(vi).

In step (i), we initialize the parameters Tmax ,
c1 and c2 as usual as the t raditional PSO paradigm.

In step (ii), we init ialize a chain of part icles

large enough to enci rcle the desi red object in the ob-
served image.If no a priori information of the ob-
served objects is available , set the initial chain to be a

rectangle a bit smaller than the image (Fig .4).

Fig.4.　Init ial populat ion for act ive contour.

In step (iii)and (vii), the velocity should not

cause the particles to move out of the image.

In step(vi)the number of neighbors for the par-
ticle is usually chosen to be decreasing.Since the ve-
loci ty of each particle is computed f rom the best posi-
tion discovered by its neighbors , the decreasing num-
ber of neighbors will naturally cause the fact that the

velocity g radually shift s to dependence on a shrinking

subset of the population.Meanwhile the populat ion

shif ts from global searching to local searching.

Usually , we choose a circle topology for the

neighbo rhood while the number of neighbo rhood at

epoch t is:

N(n(i), t)= 1-
t

Tmax
·(N(t)-1)+

t
Tmax

·2

(8)

1223Prog ress in Natural Science　Vol.17 No.10　2007　www .tandf.co.uk/ journals



where N(t)-1 and 2 are the number of members in

the neighborhood n(i)fo r the i th particle at the be-
ginning and in the end , respectively.

In step(ix), we can set tw o constants dmax and

dmin , where d max>d min>0.

If the distance between any tw o adjacent parti-
cles is larger than d max , then a new part icle is insert-
ed between them .Fo r example , for the particles

p i(t)and pi+1(t)such that  pi(t)-p i+1(t) >

dmax , both the posit ion and the best discovered posi-

tion of the new ly inserted particle are

p i(t)+p i+1(t)
2

, and the best discovered posit ion by

i ts neighbors is max(un(i)(t), un(i+1)(t)).

If the distance such that  p i(t)-p i+1(t) ≤
dmin , the suboptimal one of the tw o particles is delet-

ed.In both the above insertion and deletion , the
topology of the chain should be maintained.This

paradigm aims to build a contour with uniform ly dis-
tributed part icles and control the accuracy of the ap-
proximation.

3　Implementation

In this section , we give some implementations of

the proposed VBCPSO-ACM.During the act ive con-
tour evolution , the line segments between particles

are helpful to represent the real boundaries while the

evolving contour has approached the real boundaries.
For this reason , i t is not necessary to move the seg-
ments , and they can be computed by the positions of

the part icles.Consequently , in the implementation

below , we do no t draw the line segments befo re the

convergence of the active contour.Moreover , we only

use the g radient information as the fi tness funct ion in

the proposed VBCPSO-ACM.

The first implementation shown in Fig.5 is the

case of a hand image , in which long concavi ties ap-
pear on the boundary .In this implementation , N(0)
=48 particles are set to be the init ial population.The
values of other parameters are:c1 =c2 =2 , w star t=
0.9 , w end =0.4 , Tmax =40 , dmax =4 , d min =2.
With particle insertion and delet ion , finally N(Tmax)
=123 particles and the segments between them are

used to represent the real boundary.

The second implementation show n in Fig.6 is

the case of a contour modeling fo r a plane under the

inhomogeneous background.Note that the boundary

of the plane has different features at different parts.
The parameters are as follow s:c1=c2 =2 , w star t=
0.9 , w end =0.4 , Tmax =72 , d max =4 , dmin =2.
With N(0)=52 particles used on the initial contour ,
after the implementation of the proposed algorithm ,
N(Tmax)=58 particles are used to represent the real

boundary .

Fig.5.　Implemen tat ion of a 128×164 hand image.(a)Original
image;(b)48 part icles on the ini tial contour;(c)result s.

Fig.6.　Implementation of a 256×256 plane image.(a)Original
image;(b)52 part icles on the ini tial contour;(c)result s.

Fig.7.　Implementation on tw o objects.(a) 128×128 original
image;(b)32 part icles on the ini tial contour;(c)result s.

In the end , we apply the proposed VBCPSO to

the case of multiple contours modeling in Fig .7.The
parameters are as follow s:c1 =c2 =2 , w star t=0.9 ,
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w end=0.4 , Tmax=37 , d max=3 , dmin =1 , N(0)=

32 , N(T max)=46.The results are good except that

there are some parts of the contour betw een the de-
sired objects.

4　Conclusions

In this paper , a modified particle sw arm opti-
mization for active contour modeling (VBCPSO-
ACM)is proposed.

In comparison w ith the SOM-ACM , we do not

use any feature points to att ract the contour in VBCP-
SO-ACM.Therefore , we can omit the step of pre-
processing edge detection for the observed image.

According to the characteristics of contour mod-
eling , a vector bundle for velocity update of each par-
ticle is defined first.Then in the velocity update

scheme , the velocity is restricted in the corresponding

vector bundle and decided on the best discovered posi-
tions of other part icles as well.

As a consequence , the self-intersection problem

is eliminated to maintain the contour topology.More-
over , the VBCPSO-SOM is capable for inhomoge-
neous boundary ext raction.

In the process of iteration , we also insert and

delete particles according to the adjacent distance of

the part icles to keep the precision of approaching the

real contour.What is more , in the neighboring func-
tion , the decreasing number of neighbors causes the

population to shif t from global searching to local

searching.

The implementations show that the proposed

VBCPSO can perform contour ex t raction g reatly in

the case of long concavi ties , inhomogeneous back-
g round , inhomogeneous boundary and mult iple con-
tour ext ractions.

5　Discussions and future work

In this paper , the neighboring function for the

number of neighboring particles is determined on a

monotonously decreasing funct ion(Eq.(8)).In fact ,
i t is more favorable to consider the continui ty of the

info rmation(including g radient and intensi ties)of the
neighbo ring particles to design the number of it s

neighbo rs since each peace of boundaries is continu-
ous.What is mo re , we only use the gradient of image

to be the fitness function.In the future work , we are

going to explore some more appropriate neighboring

function and better fi tness function to seek fo r mo re

robust performance.
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